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ABSTRACT

This paper is concerned with the effect of nonuniform
meshes on the accuracy of finite-difference calculations of
fluid flow. In particular, when a simple shock propagates
through a nonuniform mesh, one may fail to model the jump con-
ditions across the shock even when the equations are differ-
enced in manifestly conservative fashion. We develop an ap-
proximate dispersion analysis of the numerical equations and
identify the source of the mesh dependency with the form of the
artificial viscosity. We then derive an algebraic correction
to the numerical equations=-a scaling factor for the pressure
gradient--to essentially eliminate the mesh dependency. We
present severaul calculations to illustrate our theory. We con-
clude with an alternate interpretation of our results.

1. 1NTRODUCTION

In finite difference methods, continuous solutions of sy-
stems of par'ial differentiel equations are repres.nted by dis-
crete values on a mes! Although the solution to the Jdifferen-
tial equations themselves 1is clearly independent of the cholce
of uesh, the difference approximation depends on the detalls of
the discretization and so varies with the choice of mesh.
Nonetheless, 1if the problem is well-resolved, the numerical so-
I'tion should closely approximate the true solution. As the
mesh is refined, one requires that the numerical solutions con-
verge to the true solution of the oripinal systen.

This {5 not aiways the case. Consider the simple one-
dimensional problem of a plston=driven shock for which we spece-
fty the initial value of the thermodynamic varfables (densiiy,
pressure, aund Iinternal energy), material veloeity and the
plston velocity. Then the shock speed, thermodynamfe varfables
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and material velocity behind the shock are completely deter-
mined by the equation of state and the jump conditions [1],
which express conservation of mass, momentum, and energy.

Kee, Kramer, and Noh [2] showed it is possible in a dif-
ference approximation to calculate the wrong values behind a
shock even if the equations are differenced in a completely
conservative fashion. The key features of their demonstration
are the use of an initial mesh that is spatially nonuniform and
an artificial viscosity that depends locally on the mesh scal-
ing. Of even more concern is that the incorrect solution per-
sists even as the mesh is refined, so long as the wesh remains
nenuniform. Similar results have been reported by Lee and
Whalen (3].

Other problems with nonuniform meshes are discussed by
Kalnay de Rivas [4], Crowder and Dalton [5], Mastin [6], and
Chin and Hedstrom [7). Since it 1is not always possible to
avoid using nonuniform meshes, and in fact there are signifi-
cant advantages to variable resolution, it is essential to un-
derstand the source of these zeroth-order errors (errors that
do not vanish as the mesh is refined and hence do not recover
the differential equations) and to mitigate them.

In the past, truncation analysis has been the preferred
method of investigating accuracy; hcwever, dispersion analysis
is an important tool in underctanding the srability of diifer-
enre equations [8). More recently, Trefethsen [9] has pointed
out thte importance of group velocity 1in obtaining accurate
calculations.

Margolin [10] looked at the simulation of stress waves in
a viscoelastic solid. He performed an approximate dispersion
analysis by considering the equivzlent continuous equations and
identified a spurious alteration of the sound speed due to cou-
pling betweer artificial viscosity and the stress relaxation
term. He then forced the numerical dispersion relation to ap-
proximate the physical rclation by introducing a scaling factor
into the stress gradien..

This technique, called gradient scaling, differs from
simple subtraction of the truncation errors in at least two es-—
sential ways. First, it is not necessary Lo calculate any fin-
ite diftference approximations to derivatives; the corrections
are simply algebraic. Second, subtracting the truncation
errcrs in the example above (of stress wave propagation)
amounts to eliminating the artificial viscosity. Since this
viscosity 1s necessary to damp numerical oscillations, {its
ciimination 18 not a viable solution to the difficulty.

Both Trefcethsen and Margolin dealt with regular meshes.
To derive the dispersion relation, one substitutes the discrete
approximation of a plane wave fnto the difference equattons,
The situatlon for nonunfforn nmeches {8 more complicated. In-
sertion ol a plane wave into the ditference equation: leads to
a relation tn which fregoeney depends on the spattal coordinate



as well as on the wave number. This is analogous to wave prop-
agation in an inhomogeneous medium. When the properties of the
mediun vary slowly, one can employ & two sczle analysis [1l].

With this introduction, we can now outline the rest of
this paper. In the next section, we describe a simple problem
of wave propagation on a nonuniform mesh. Calculations show a
systematic error (when compared with analytic results) that
does not decrease with mesh refinement. Next, we develop an
approximate dispersion analysis to isolate the problem. The
method of gradient scaling is then applied to the difference
equations, and the rew results are compared with both the un-
corrected calculations and the analytic results. Finally, we
discuss why strict conservation is not sufficient to guarantee
the proper state behind a shock.

2. PROBLEM DESCRIPTION

We begin with the linearized equations for one~dimensional
fluid flow, or for stress propagation in an elastic solid:

du _p

LRy x (1)
dp _ _y du N
e - M &

Equation (1) expresses the conservation of momentum, where u is
the material velocity and p is the pressure. Eguation (2) is
the constitutive law for the material. The density p and the
modulus M are conslidered constant.

We solve a siwmple piston problem in which the pressure arnd
material velocities are initially everywhere zero. In our
model problem, the left boundary begins to move to the right at
time zero, compressing the fluid, with Mach number of 0.2 and

= 0.2 /M/p . (3)
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We construct a staggered grid with pressures stored at
cell centers and velocities at the nodes (sce Fig. 1).
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Fig. 1. Configuration of the stappered prid.



Our difference equations are
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Here the superscript n refers to time level t" - nAt, where At
is the time step. The time step mucst be limited by a Courant
condition for stability [8].

We have introduced an artificial viscous pressure into
Eq. (5) to suppress numerical oscillations [12]. The coeffi-
cient A 1s chosen to have the form

A, =~ c /pM Ax. . (6)
L i+

We have made the length scale equal to the local cell size, so

that the wave front is spread out over a fixed number of cells

rather than a fixed length. 1In our numerical example we choose
the dimensionless coefficient c, - 0.2, which results in the

wave being spread over about three cells.
We pick a constant ratio for the mesh spacing

Ax

a= At (7
3=t

If a equals 1, we have a uniform mesh. If a is greater than !,
the mesh 1s expanding; 1f a is less than 1 the mesh Is con-
tracting. The width of the first cell 1is

Ax = Ax3/2 . (8)

The results for several cholces of a are shown in Flgures

2, 3, and 4. The uniform case¢ (a = 1) ylelds the correct solu-
tion. However, when a > 1 we sce that the pressure behind the
front is too high; when a < 1, the pressure {s too low. More-
over, the speed of the front {s too slow when a > i and too
fast when a < l. We note that in each case, the pressure he-
hind the front does reach a level value, Note that the amount
of overshoot or undershoot 1s approximately lHnear in (a - 1).
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Pressure profiled on a mesh with fncreasing grid
spacing for sceveral values of a. Note that Flg. 3 1s
a window of Fig. 2 with a scale change to show the
effoct.
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To perform the dispersion analysis on a uniform mesh, we
would substitute

n
u - u

3 o €XP 1(kx - wt)

(9)
and so generate the dispersion relation. However, if a # !,
then in our Eqs. (4) and (5) this substitution results in a
relation between wave number and frequency that involves the
mesh cize. This seems to imply that the wave speed has become
dependent on position.

However, the numerical simulations in-
dicate that the wave speed, while ircorrecct it a # 1, neverthe-
less is constant for the constant ratio meshes, In the next
section, we will describe an approximute dispersion analysis
that resolves this situation.

3.

APPROXIMATE DISPERSION ANALYSIS

Our analysis can be summirized as follows.

First, we will
expand the difference equatiors using Taylor series to derive a
set of equivalent continuum equations,

Then we will find ap-
proximate sanlutions in the form of planc waves with small per-
turbations. Finally, we will reinterpret

these perturbations
as alterations of the effective wave number.

Expandiny the difference Eqs. (4) and (5), we derive the
equivalent conti{nuum ejquations




du___g du
3x
and
—P—-—Ma“ . (11)
ax
(Ve have used the relation
Xy = ax(l + a + ... aj—z) (12)
in deriving Eq. (10).)
The constants in Eq. (10) are given by
a-1
A=2 /EE (a + l)
(13)

a-1

B = L YoM ( ) Ax .
The expansion has peen truncated by including terms only to
first order in the small quantity (a - 1),

From Eqs. (10) and (11), we can form the wave equation for
the velocity

2 2 2 3
p——dlzl-Ma‘;_+A:x;t+(Ax+B) 32“ . (14)
dt ax ax at

We seek solutions to this equation as slight perturbations of
plane waves. In particular, we try

u = uo(l + ax + bxz) exp 1(kxn — wt) , (15)
which lesds to

2 2
k"M = pw (16)
for the physical dispersion relation,

Substituting Fq. (15) into the wave 2quation Eq. (14), we
find, to first order in (a - 1) and also in kax,

1 a -1
-
a 2 ‘L (a + l)
(17)
1 a -1 2
= 4 = Ad
b —Zk'L(G‘le .
Now {u a reglion near the origin ({.e., x = 0), we have
(1 + a.)~ exp (ax) . (18)

Making ase of this approximation we can rewr.te Eeo. (15):



u =y exp (i¢k'x - we)) , (19)

vhere k' 1s an effective wave number. Using Eq. (17), we find
that

‘L ta ~ 1
- + = (&= .
k' =k (125 (557)) (20)
Here the (-) sign refers to waves traveling to the left and the
(+) sign to waves traveling to the righe.

In our analysis a 1s constant over the mesh; there is
nothing special about the origin except that it specifies our
choice of Ax. As long as k&Ax << 1, we could expand about any
point with 8 similar result. That is, the effective wave
number k', and the assoclated phase and group velocities

v
c!' = ;‘:—' - ::' = - M/p (21)
L -1
[1 23 (G5

are constant over the mesh. (To the order to which we are in-
terested in this analysis, the phase and group velocities are
equal to each other, as they are in our physical example.)

This verifies the existence of a flat pressure profile behind
the shock. Notc the fundamental asymmetry between left- and
right-going waves because of the asymmetry in zoning. The wave
moves too fast if it moves into a region of expanding zones.

If a varies over the mesh, then the effective wave number
will also vary. However, as long as this variation 1is slow,
our analysis will hold locally. Of course, if a varies
rapidly, then our derivation of Eq. (14) 1is not valid. The
form of the effective phase and group velocities verifies our
numerical experiments in that the error is approximately linear
in (a - 1). 1t also 1llustrates that the error, to lowest
ordeyr, 1s independent of Ax, and so will not vanish as the mesh
is refined.

4, GRADIENT SCALING

To aitigate the effects of nonuniform zoning, we introduce
a scaling factor, B, for the pressure gradient into the
difference Eq. (5). This {s, now

un+l _ un Pn+l _ Pn+l
._J___l [ __J:i__.li 3
0 At 2] ij + e (22

Expanding our new set of difference equations as before, and
then forming a wave equation for velocity, we derive

2 2 2 3

a 2
d‘2'-5>1—-—;+A——3 5Tt (Ax + B) 32” . (23)
dt ax x Ix“aAt




Again, we try as a soluiion the form of Eq. (13)
u= uo(l + ax + bxz) exp (1(kx - ut)] .

Now, however, we ask whether we can choose B so that a = 0.

In fact, this can be accomplished if we choose

B =] * ¢ E_:_l)

L (a + 1 ’ (24)

where the plus sign applies to right-going waves.

When tlie gradient scaling term is vsed in our prototypical
piston problem, the results are clearly improved. For each
choice of a, Table I shows that the error is reduced by about
an order of magnitude. This is consistent with our analysis,
which ignored terms of order (a - 2.

Pressure

a uncorrected corrected
1.00 .20000 -
1.05 .20103 »20000
1.10 « 20201 «20001
1.15 20302 20021
.96 «19941 «20002
.92 .19883 20008

Table 1. Comparison of the level values of pressure behind the
shock. The last column shows the results of a calcu-
lation with gradient scaling. The results of the ex-
panding mesh used a different viscosity than those of
the contracting mesh, and so are not directly
comparable.

In our final exawple, w2 consider a nonuniform mesh with a
variable value of a. The zoning has a sinusoldal variation
27 .
Bk, =1+ .2 x sin (15 i) (25)
The :zoning has a wavalength of ten cells, so a i1; greater than
1 for 5 cells and is less than 1 for the next 5 cells.

The results of a calculation on this mesh are shown in
Fig. 5. The pressure amplitude shows a similar sinusoidal var-
iation, slightly lagging the zonal variation in phase. The un-
corrected calculation has a maximum excursion comparable to a
calculation using a constant value of a = 1.07, Using the
pressure gradient scaling we realize a reduction of error by
about a factor of five. Since @ is not a constant in this
example, B must be evaluated locally. We determined Bj+i(u)

. 4 = Ax .
from Eq. (24) with aJ+* ij+l/ xJ
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Fige 5. Pressure profile for a sinusoidally varying grid
spacing. The constant spacing solution is included
for comparison.

5. DISCUSS10n

We conclude by reinterpreting our results in terms of the
jump conditions. In the following paragraphs, we use the term
"shock"” to mean the transition between some uniform initial
state and some other uniform final state.

Physically, the thermodynamic jumps across a shock and the
shock speed are uniquely determined by the equations of conser=
vation of mass, momentum and energy, plus the equation of
state. (An entropy principle to guarantee a flat profile is
also required.) On a uniform mesh, conservative differencing
will allow one to calculate the precise jumps. As we hdve
seen, on a nonuniform mesh, this is no longer true.

The explanation lies in the form of the artificilal viscos-
ity, which spreads the shock over a fixed number of cells
rather than over a fixed length. As the shock propagates, its
width is steadily changing. Thus, the mass swept up by thc
shock 1s not the mass coning out the back end. In essence, the
shock trunsition is acting as a source or sink of mass, as well
as the associated momentum and energy.

The disperslon of the shock front does not depend on wave
number, but :ather on the coordinate. It is «ue to the term



3
Ax azu
ox dt

in the wave ¢ uatien Eq. (l14). Assuciated with this disper-
sion, the shock moves with a slig.tly incorrect velozity (Eq.
(19),. 1f we approach this problem with truncation analysis,
we would indentify the terms in the equivalent continuum Egs.
(10) and (11) that have coefficient A. Our solution would be
to estimate these terms numerically and subtract them out.
This is equivalent to using only a "fixed length™ viscosity.

The difficulty with this approach is the technique to
choose this fixed length. The role of the artificial viscosity
is to prevent numerical osciliations behind the shock. To ac-
complish this, the length scale embedded in the viscous coeffi-
clent must be comparable to the size of a cell. (For a more
detalled discussion of artificial viscosity, see Wilkins [l4].)
If the fixed length is chosen as large as the biggest cell, we
will have excess smoothing in a region of smaller cells. 1f
the fixed length is chosen any smaller, than we will develap
oscillations in the region of large cells.

Our solution, based on dispersion analysis, does not
affect the dispersion of the shock front. It does change the
effective wave speed. In terms of the jump conditions, once we
have specified the conservation of mass, momentum and energy,
the only freedom we have remaining is the equation of state.
Indeed, the gradient scaling factor has the effect of altering
the compressibility of the fluid. This new compressibility en-
sures that the amount of mass and momentum coming out the back
end of the shock is appropriate to yield the proper jumps in
these variables.

REFERENCES

1. HARLOW, F. H. and AMSDEN, A. A. = 'Fluid Dynamics', Los
Alamos Scientific Laboratory, LA-4700, June 1971.

2. GEE; M., KRAMER, G., and NOH, W. - 'Fixed and Nonfixed
Length Q Studies', Lawrence Livermore Natlonal Laboratory,
UCID—-18515, November 1979.

3. LEE, W. H. and WilALEN, F.P. - 'Calculation of Shock
Problems by Using Four Different Schemes', Proc.,
Numerical Metheds for Transient and Coupled Prob'ems, R.
V. lLewis, et al., Eds., Venice, Italy, July 198.

4. KALNAY DE RIVAS5, E. - 'On The Use of Nonuniform Mesh
Systems', J. Comp. Phys. 10, pp 202-210, 1972.

5. CROWDEPR, H. H. and DALTON, C., - "Errors in the Use of
Nonuniform Mesh Systems', J. Comp. Phys. 7, pp 32-45,
1971.

6. MASTIN, C. W. = 'Error Induced by Coordinate Systems'
Proc. Numerical Grid Generation, J. F. Thompson, Ed.,
1982.



9.

10.

11.

12.

13.

14,

CHIN, R. C. and HEDSTROM; G. W. = 'Scattering of Waves
from a Staggered Difference Scheme on a Variable Grid',
Proc. 10th International Association for Mathematics and
Computers in Simulation, Montreal, Canada, August 1982.

RICHTMYER, R. D. ana MORTON, C. W. - Difference Methods
for Initial-Value Problems, 2nd Ed., Interscience

Publishers, New York, 1967.

TREFETHSEN, L. N. = 'Group Velocity in Finite Difference
Schemes', SIAM Review 24, pp 113-135, 1982.

MARGOLIN, L. G. = 'Wave Propagaticn in Inelasric Media',
Physica 12D, pp 163--170, 1984.

WHITHAM, G. B. - 'Dispersive Waves and Variational
Principles', Studies in Mathematics, Vol 7, A. H. Taub,

Ed., published b, Jatnematical Association of America,
1972.

VON NEUMANN, J. and RICHTMYERK, R. D. —= 'A Hethod for the
Numerical Calculations of Hydrodynamic Shocks', J. Appl.
hys. 21, pp 232-237, 1950.

HIRT, C. We — 'Heurisric Stability for Finite Difference
Lquations', J. Comp. Phys. 2, pp 339-355, 1968,

WILKINS, M. L. = 'Use of Artificial Viscosity in
Multidimensional Fluid Dynamic Calculations', J. Comp.




